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Measures of Information and Error Laws
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The logarithm of joint error densities for the most common means are shown to
be proportional to the difference of two weighted means which discriminate
between a complete, nonuniform probability distribution and the uniform
distribution. The difference in the weighted means is related to a new Shannon-
type inequality for the discrimination between two probability distributions.
Measures of the distance between the two distributions are determined, and a
new statistic, comparable to x 2, is derived from a first-order approximatiom of
the directed divergence. Comparison is made between the error laws and the
method of maximum likelihood.

1. INTRODUCTION AND SUMMARY

Statisticians have introduced many ad hoc procedures to discriminate

between a `null’ hypothesis, which assigns a set of probabilities, p 5 p1,

p2, . . . , pN , to a set of events, and the observed frequencies, q 5 q1, q2, . . . ,
qN . If the former set of numbers is sufficiently `close’ to the latter set, then

we are satisfied that theory fits experiment. but how close is `close’ ? At the

beginning of this century, Pearson introduced a x 2 test to deal with this

problem analytically. The x 2 test measures the mean-squared error committed

when the probabilities p are taken to be the true values.

Another way to discriminate between two distributions is to construct
the log-likelihood ratio for discriminating in favor p against q. This utilizes

the Shannon inequality, based on the concavity of the Shannon entropy, which

Kullback has referred to as the `directed’ divergence (Kullback, 1959). A

more symmetrical form, called the symmetric divergence, puts the two distri-

butions on the same footing by adding two Shannon inequalities, where the
second inequality results from interchanging p and q. However, in all these

attempts to discriminate or measure the `distance’ between the two distribu-
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tions no attempt has been made to relate the criteria with error laws, other

than the normal one, that lead to a whole host means as the most probable

values of the quantity measured (Keynes, 1921). Furthermore, the normal or
x 2 distribution arises from the assumption that the two distributions p and q
are close in the sense that higher than quadratic terms in their difference can

be neglected.

In this paper, we relate the logarithm of the joint error laws to a difference

in the weighted means. At least as far as the common means are concerned

(i.e., the arithmetic, geometric, and harmonic means), the difference in the
two weighted means always results in a discrimination between a nonuniform

and a uniform distribution. Well-known inequalities are shown to be responsi-

ble for the fact that the joint error law is a bona fide probability density. We

then give a number of different proofs showing that the difference in the

weighted means is always of the same sign. This cannot be derived from the

well-known theorems of comparability of weighted means (Hardy et al., 1952)
because the functions to be compared are the same, while their arguments are

different. The difference in the weighted means will be shown to be related

to a new discrimination inequality through the mean-value theorem. Finally,

we will derive a new statistic, akin to the x 2 statistics of Pearson and Neyman,

from a first-order approximation of the symmetric divergence of the difference
in the powers of the two distributions.

2. CRITERIA OF `SPREADING’

If sets of N nonnegative numbers a1, a2, . . . , aN (or b) are the realizations
of random events with the same probability density f, then thermostatistics

tells us that the error law leading to the arithmetic mean a of the measurements

as the most probable value of the quantity measured is given by (Lavenda,

1991)

log fN (a; a) 5 Na log a 2 o
N

i 5 1

ai log ai # 0 (1)

The inequality is due to the fact that Shannon entropy

H1(a) : 5 2 o
N

i 5 1

ai log ai (2)

tends to increase as the set of variables become less spread out. This is none

other than a manifestation of concavity (Marshall and Olkin, 1979), H1(a) $
H1(a). The same property of concavity is responsible for Shannon’ s inequality,

where if p and q are two complete distributions, then
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2 o
N

i 5 1

pi log 1 pi

qi 2 # 0 (3)

We may say that p majorizes q: p s q. Interchanging p and q gives a second

inequality which when added to (3) gives

7( p, q) 5 o
N

i 5 1

( pi 2 qi) log 1 pi

qi 2 # 0 (4)

This is known as the `symmetric divergence’ for the discrimination between

the two probability distributions p and q (Kullback, 1959). It is well known
that (4) does not satisfy the triangle inequality (Kullback, 1959, p. 6), and

therefore the symmetric divergence cannot be considered a distance in a

finite-dimensional space equipped with a metric.

In fact, one would like to generalize (4) to

7( p, q) 5 o
N

i 5 1

( pi 2 qi)[h(q) 2 h( p)] $ 0 (5)

where h is continuous and strictly monotonic. The goals of this paper are (i)

to show that monotonic power laws of the form t a 2 1, where a P (0, 1) or

a P (1, 2], also satisfy (5), and (ii) to relate the discrimination with the error

laws of probability theory that select out the familiar mean values as the

most probable ones, by expressing the logarithm of the joint error laws as
the difference of weighted means for the discrimination between a nonuniform

probability distribution and the uniform one.

From what has been said so far, one might be tempted to generalize (1)

in the following manner. Consider the difference of the weighted means as

determining the logarithm of the joint error law:

log fN (a) 5 x 2 1 1 o
N

i 5 1

pi x (ai) 2 2 c 2 1 1 o
N

i 5 1

pi c (ai) 2 (6)

where x and c are strictly monotonic and continuous. Denoting by

x { c 2 1(x)} : 5 x + c 2 1 5 F (x) (7)

the composition function, we can write (6) as

log fN (a) 5 x 2 1 1 o
N

i 5 1

pi x (ai) 2 2 x 2 1 F F 1 o
N

i 5 1

pi c (ai) 2 G
If we set x 5 c (a) and a 5 c 2 1(x) (Hardy et al., 1952, p. 70), then by virtue

of the mean-value theorem, the difference in the weighted means can cast

in the form (Cargo and Shisha, 1970)
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log fN (x) 5 ( x 2 1)8(xÏ ) H o
N

i 5 1
pi F (xi) 2 F 1 o

N

i 5 1
pi xi 2 J (8)

where xÏ is some value in the domain of x. If x is increasing, then a necessary

and sufficient condition that (8) be negative is that F should be concave

(Hardy et al., 1952, p. 75).

However, in order to compare the weighted means in (6), the composition

function (7) cannot be linear, for otherwise the difference in the weighted

means vanishes. If, however, we are discriminating between two sets of
probabilities p and q with weighted means of the same order, then their

difference will not vanish. The discrimination is of the type (5), with power

laws replacing logarithms. The relationship between the difference of the

weighted means in (6) to the directed divergence (5) is given by the mean-

value theorem. Hence, we will have a direct chain of relations leading from

the joint error laws, for the common means to be the most probable values,
in terms of the difference of weighted means, comparing a probability distribu-

tion p or q with the uniform distribution 1/N to the directed divergence

involving powers instead of logarithms. In the same way that the first-order

approximation of the logarithm of a ratio, by the mean of its upper and lower

bounds, leads to the Pearson x 2 static, the first-order approximation of the
difference in power laws, by the mean of its upper and lower bounds, gives

a new statistic which reduces to the x 2 statistic in a given limit.

3. ERROR LAWS AND WEIGHTED MEANS

In this section we show that the logarithm of the joint error laws leading

to the most familiar means as the most probable value of the quantity measured

are proportional to the negative of the difference of the weighted means:

1 o
N

i 5 1

p a
i 2

1/( a 2 1)

2 1 o
N

i 5 1

piq
a 2 1
i 2

1/( a 2 1)

(9)

where p and q are two complete probability distributions, and the characteristic

exponent is either restricted to the semiclosed interval a P (1, 2], or the

open interval, a P (0, 1).

3.1. Arithmetic Mean

In order that the arithmetic mean a be the most probable value of the

quantities ai measured,
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o
N

i 5 1

(ai 2 a) 5 0 (10)

it must coincide with the stationary condition for the extremum of the probabil-

ity density of ai

d

d a
log f (ai; a) 5 0 (11)

Since the quantities ai are independent and have a common distribution,
whose density is f, (10) will be equivalent to (11) provided that they are

proportional to one another (Keynes, 1921)

d

d a
log f (ai; a) 5 w 9(a)(a 2 ai)

where, for convenience, the function of proportionality w 9(a) is taken to be

the second derivative of some function of a, independent of the measurements
ai . For if it did depend upon a measurement ai , the proportionality would

be violated for the density f (aj ; a) since it does not depend on ai .

An integration by parts leads to the error law:

log f (ai ; a) 5 w 8(a)(a 2 ai) 2 w (a) 1 c (ai) # 0 (12)

where c (ai) is a function of integration that does not depend upon a. Ideally,

the error law should be a function of the error only. This, more special

assumption was invoked by Gauss to obtain the normal law of error. For if

we set w (a) 5 2 a2/2 and c (ai) 5 2 a2
i /2, (12) becomes

log f (ai ; a) 5 2 1±2 (ai 2 a)2 (13)

which is none other than Gauss’ law of error showing that negative and

positive errors of the same absolute amounts are equally likely.

Since the errors committed are independent of one another, the N-joint

error law is the product of the individual densities. In terms of its logarithm,

we have

log fN (a) : 5 o
N

i 5 1

log f (ai ; a) 5
1

2 1 a 2N 2 o
N

i 5 1

a2
i 2 (14)

which must be less than zero if fN is to be a bona fide probability density.

It is precisely the Cauchy inequality (Hardy et al., 1952, Theorem 7, p. 16)

o
N

i 5 1
a2

i o
N

i 5 1
b2

i . 1 o
N

i 5 1
aibi 2

2

with b 5 1, which guarantees (14) is negative.
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Introducing the probabilities pi 5 ai/ ( N
i 5 1 ai into the joint error law (14)

leads to

log fN ( p, q) 5
1

2
(aN )2 1 o

N

i 5 1

piqi 2 o
N

i 5 1

p2
i 2 (15)

In order that (15) be equivalent to (14), we have to set q 5 1/N. It will then

be appreciated that the logarithm of the joint error law, leading to the arithmetic

mean as the most probability value of the quantity measured, is proportional
to the negative of the difference of the weighted means (9) for a 5 2.

It is quite remarkableÐ and it will reappear time and time againÐ that

simple inequalities are behind the error laws. Moreover, in all the error laws

to be derived, we will be always be comparing a nonuniform distribution of

probabilities, either p or q, with the uniform distribution, 1/N.

For classical thermodynamic systems w (a) 5 2 a(log a 2 1), and c is
the same function of ai that w is of a (Lavenda, 1991). Otherwise, there

would be a different thermodynamics for the microcanonical and canonical

ensembles. With these choices, the error law (12) becomes the discrete Pois-

son distribution,

f (ai ; a) 5
aai

ai!
exp( 2 a) (16)

provided the ai are large enough to validate the use of Stirling’ s approximation.

Taking the product of the different error laws (16) gives the N-joint error
law for the Poisson distribution as

fN (a) 5 exp H 2 o
N

i 5 1 1 ai log 1 ai

a 2 2 ai 1 a 2 J (17)

Each term in the sum is nonnegative by virtue of the inequality x log(x/y)

$ x 2 y. Now setting ai 5 pi N so that a 5 1 gives

fN (p) 5 exp 1 2 N o
N

i 5 1

pi log pi 2 (18)

which can be taken as Boltzmann’ s principle relating the probability of

committing N errors to the Shannon entropy (2). In terms of our original

quantities ai the condition that (18) be a bona fide probability distribution is

H1(a) $
1

N o
N

i 5 1

H1(ai)

The Shannon entropy manifests a tendency to increase as the measurements

ai become less spread out.
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3.2. Geometric Mean

The error law leading to the geometric mean pÄ as the most probable

value of the quantity measured equates each term in the sum

o
N

i 5 1 1 pi log pi 2
1

N
log pÄ 2 5 0

with the corresponding term in ( N
i 5 1 d log f ( pi ; pÄ )/dpÄ 5 0. The probability

densities f (pi ; pÄ ) for each of the probabilities pi satisfies

d

dpÄ
log f ( pi; pÄ ) 5 w 8( pÄ ) log 1 ppi

i

pÄ 1/N 2
where the function of proportional ity w 8 can only depend upon pÄ since the
pi are independent. An integration by parts then gives

log f (pi; pÄ ) 5 w (pÄ ) 1 pi log pi 2
1

N
log pÄ 2 1

1

N # w (pÄ ) d log pÄ 1 c (pi)

where again the function of integration c can only depend on pi and must

be independent of pÄ (Keynes, 1921).

This error law is not symmetrical: positive and negative errors of the

same magnitude are not equally as likely. The simplest law of error leading

to the geometric mean is obtained by putting w ( pÄ ) 5 2 pÄ N (Keynes, 1921),

and for the sake of symmetry we set c (pi) 5 P N
i 5 1 qpi

i 5 qÄ , where qi Þ pi

and ( N
i 5 1 qi 5 1. The resulting law of error is

f (pi; pÄ ) 5 1 pÄ

ppiN
i 2

pÄ

exp{ 2 ( pÄ 2 qÄ )} (19)

Since the measurements pi are independent, the joint probability density is

the product of the individuals densities,

fN (pÄ ) 5 &
N

i 5 1
f ( pi; pÄ ) 5 exp{ 2 N(pÄ 2 qÄ )} (20)

It remains to be shown that pÄ $ qÄ . Shannon’ s inequality (3), being a

consequence of the concavity of the Shannon entropy (2), can be written as

log P N
i 5 1 (qi /pi)

pi # 0. This means that P N
i 5 1 (qi /pi)

pi # 1, and it follows at

once that qÄ # pÄ . If it happens that qi 5 1/N, Shannon’ s inequality (3) requires

pÄ . 1/N, or equivalently,

H0 : 5 log N $ H1(p) : 5 2 log pÄ

In other words, the Hartley entropy H0 cannot be inferior to the Shannon

entropy H1.
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Moreover, the concavity of qÄ implies the concavity of log qÄ , while the

convexity of log pÄ implies the convexity of pÄ (Marshall and Olkin, 1979,

B.7.b p. 451). The difference in the exponent of the joint error law for the
geometric mean (20) is a limiting case of the difference of the weighted

means (9) as a - 1. The characteristic exponent a now lies in the open

interval (0, 1).

3.3. Harmonic Mean

We now consider the diametrically opposite limit as a ® 0, and deter-

mine the law of error leading to the harmonic mean aÃ,

o
N

i 5 1 1 Npi

ai

2
1

aÃ2 5 0 (21)

as the most probable value of the quantity measured. Deviations from (21)

must be equivalent to deviations from ( N
i 5 1 d log f (ai; aÃ)/daÃ5 0, so that the

usual procedure gives the error law:

log f (ai; aÃ) 5 w (aÃ) 1 Npi

ai

2
1

aÃ2 2 # w (aÃ)

aÃ2
daÃ1 c (ai) (22)

The simplest form of the error law is obtained by setting w 5 2 aÃ2 and c 5
2 ai /Npi (Keynes, 1921). The error law (22) then reduces to

log f (ai; aÃ) 5 2 1 Npi

ai 2 (aÃ2 ai)
2 (23)

showing again that errors of the same magnitude and different sign are not

equally as likely.
Since the ai are the outcomes of independent events with the same

distribution, the logarithm of the joint error law is obtained by summing (23)

over all N. If we want to use the fact that the harmonic mean is less than

the arithmetic mean unless all the ai are equal, we now have to set p 5
1/N. We then obtain

log fN (aÃ) 5 o
N

i 5 1

log f (ai; aÃ) 5 2 N(a 2 aÃ) , 0 (24)

asserting that the arithmetic mean is always greater than the geometric mean

unless all the ai are equal.

Introducing the probabilities qi 5 ai/ ( N
i 5 1 ai into the joint error law

(24) gives
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log fN (qÃ) 5 2 aN 2 H 1

N
2 1 1

N o
N

i 5 1

1

qi 2
2 1

J
The term within the curly brackets is precisely the difference of the weighted

means (9), with the p distribution as uniform, in the limit as a ¯ 0. In this

limit, the second weighted mean in (9) coincides with the harmonic mean, qÄ .
Thus, we have proved the following.

Theorem 1. The joint error laws leading to the common means as the

most probable values of the quantity measured are proportional to the negative
of the difference in the weighted means (9). The arithmetic mean arises in

the limit a 5 2, while in the limits a - 1 and a ¯ 0, the geometric mean

and the harmonic means are most probable values of the quantity mea-

sured, respectively.

We now prove that the difference of the weighted means (9) is always
positive for p Þ q. We then relate it to a new class of directed divergences.

4. PROOF THROUGH MAJORIZATION

A nonuniform distribution p is said to majorize the uniform distribution

1/N: p s 1/N (Marshall and Olkin, 1979). Since ( N
i 5 1 p2

i is Schur-convex, it

follows that ( N
i 5 1 p2

i $ 1/N, showing that (15) is negative when q 5 1/N.

First consider the weighted mean

} a 2 1(a) 5 1 o
N

i 5 1
p a

i 2
1/( a 2 1)

(25)

For a P (1, 2], p a is convex, and }( a 2 1) is increasing. Hence, (25) is Schur-

convex, while for a P (0, 1), p a is concave, and } 2 (1 2 a ) is decreasing.

Consequently, (25) is Schur-convex on both the intervals a P (1, 2] and a P
(0, 1), and p s 1/N implies ( ( N

i 5 1 p a
i )1/( a 2 1) $ 1/N.

Next consider the weighted mean

} a 2 1(q) 5 1 o
N

i 5 1
piq

a 2 1
i 2

1/( a 2 1)

(26)

for q Þ p. For fixed p, q a 2 1 is concave in the interval a P (1, 2], and

} a 2 1(q) is increasing. This implies that (26) is Schur-concave on this interval.
Alternatively, for a P (0, 1), q a 2 1 is convex and } 2 (1 2 a )(q) is decreasing.

Again the weighted mean (26) is Schur-concave. Majorization p s 1/N now

implies ( ( N
i 5 1 piq

a 2 1
i )1/( a 2 1) # 1/N. Hence, the difference in the weighted

means (9) is positive semidefinite.
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5. DERIVATION OF A NEW DISCRIMINATION INEQUALITY

The difference of the weighted means (9) for a P (0, 1) can be looked
upon as the error committed in choosing the probabilities q when the true

probabilities are p. In fact, the inequality of their logarithms,

2
1

1 2 a
log 1 o

N

i 5 1

p a
i 2 $ 2

1

1 2 a
log 1 o

N

i 5 1

piq
2 (1 2 a )
i 2

is just Shannon’ s inequality (3) in the limit as a - 1.

Employing the mean-value theorem, we may write the difference (9) as

(Cargo and Shisha, 1970)

}( a 2 1)( p) 2 }( a 2 1)(q) 5 (h 2 1)8(r){} a 2 1
a 2 1(p) 2 } a 2 1

a 2 1(q)} (27)

where (h 2 1)8(r) 5 r(2 2 a )/( a 2 1)/( a 2 1) for some r P [q, p]. Since (h 2 1)8(r)
" 0 as a " 1, the condition that the difference of the weight means be

greater than zero implies

% a , 1 5 o
N

i 5 1
pi{q a 2 1

i 2 p a 2 1
i } $ 0 (28)

for a , 1, while

% a . 1 5 o
N

i 5 1

pi{p a 2 1
i 2 q a 2 1

i } $ 0 (29)

for a P (1, 2]. These inequalities have the form of a Shannon-type inequality:

o
N

i 5 1
pi{h(qi) 2 h( pi)} H $ 0 if a P (0, 1)

# 0 if a P (1, 2]
(30)

expressing the error committed when the estimates q are used instead of the

true probabilities p (Good, 1952).

AczeÂl and DaroÂczy (1975, p. 114) ask what type of functions h satisfy

the first inequality in (30). Certainly h(x) 5 2 log x satisfies it, because the
first inequality in (30) is a direct consequence of the concavity of 2 x log x.

AczeÂl and DaroÂczy (1975, Theorem, 4.3.8, p. 116) make even the following

stronger statement:

If and only if h satisfies ( N
i 5 1 pi h( pi) # ( N

i 5 1 pi h(qi) for a fixed N . 2 does it

have to be of the form h(p) 5 c log p 1 b for all p P (0, 1) and c # 0, b constants.

It is to the ª if and only ifº assertion that we take exception. Their derivation

makes use of two distinct points p1 1 p2 5 q1 1 q2 5 r, where r P (0, 1),

and, for simplicity of notation, they write p1 5 p and q1 5 q. Assuming the

first inequality holds in (30), they obtain an inequality which is symmetric



Measures of Information and Error Laws 3129

in p and q. Interchanging p and q gives a second inequality. At this point

they assume q . p and get the upper and lower bounds on the ratio [h(q) 2
h( p)]/(q 2 p), namely

r 2 q

q

h(r 2 p) 2 h(r 2 q)

(r 2 p) 2 (r 2 q)
$

h(q) 2 h( p)

q 2 p
$

r 2 p

p

h(r 2 p) 2 h(r 2 q)

(r 2 p) 2 (r 2 q)

Letting q ® p, the bounds tend to

r 2 p

p
h8(r 2 p)

But this they claim must be equal to h8(p), the derivative of h at p. Hence,

ph8( p) 5 (r 2 p)h8(r 2 p). Since the only restriction on r is that it lie in
the open interval (p, 1), they conclude that ph8(p) 5 const 5 g , 0. From

this they deduce that h( p) 5 2 g log p.

AczeÂl and DaroÂczy establish the properties that h is monotonic and

nonincreasing. Hence, its logarithm is also monotonic and nonincreasing.

Replacing h by log h, the above condition gives ph8( p)/h(p) 5 a 2 1, which

upon integration gives h(p) 5 cp a 2 1, where the constant of integration c .
0. Thus, the first inequality in (30) is satisfied by any completely monotone,

nonincreasing, Schur-convex function, and in particular by h(p) 5 cp a 2 1 for

a P (0, 1).

Prior to a general proof, let us consider the limiting situations. Multi-

plying (28) by a positive number (1 2 a ) 2 1 . 0 does not change the inequality,

so that

1

1 2 a o
N

i 5 1
pi(q

a 2 1
i 2 p a 2 1

i ) $ 0 (31)

In the limit as a - 1, (31) becomes Shannon’ s inequality (3), while in the

opposite limit as a ¯ 0, the inequality reduces to ( N
i 5 1 pi /qi 2 N $ 0. Inserting

for the probabilities qi 5 ai/ ( N
i 5 1 ai converts this into the arithmetic-geometric

mean inequality a 5 ( N
i 5 1 ai /N . aÃ5 1/ ( N

i 5 1 ( pi /ai) unless all the ai are equal.

As we have mentioned, AczeÂl and DaroÂczy (1975, p. 117) deduce the

properties that h must be strictly monotonic and nonincreasing. If and only
if h is Schur-convex will (Marshall and Olkin, 1979, p. 447)

o
N

i 5 1

( pi 2 qi)[h8(pi) 2 h8(qi)] $ 0 (32)

hold. There are only two classes of such functions (Hardy et al., 1952, p. 65):

t a 2 1, for a , 1, and 2 log t. Both are strictly monotonic and nonincreasing.

Therefore, Kullback’ s directed divergence can be extended to a second class

of completely monotone functions t a 2 1, so that (28) and (29) can be considered
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as directed divergences when a P (0, 1) or a P (1, 2], respectively. We now

proceed to give a first general proof.

Consider the HoÈ lder inequality (Hardy et al., 1952, Theorem 10, p. 21)

o
N

i 5 1

p a
i q1 2 a

i # 1 o
N

i 5 1

pi 2
a

1 o
N

i 5 1

qi 2
1 2 a

5 1

for 0 , a , 1, while for a . 1 the inequality is reversed. This can be

written as (AczeÂl and DaroÂczy, 1975, p. 208)

o
N

i 5 1
qi 1 pi

qi 2
a

# 1, a P (0, 1). (33)

Kullback (1959, p. 40) defined (33) as the moment generating function,

]( a ) 5 o
N

i 5 1
qie

2 a u i (34)

where u i 5 log(qi /pi) is the conjugate of a in the sense of a Legendre

transform. The logarithm of the moment generating function is strictly convex

in a , and its Legendre transform a u 2 log ] varies continuously and monoton-
ically from 0 to the `minimum discrimination information’ ( N

i 5 1 qi log(qi /pi)

as a varies from 0 to 1.

The discrimination between the probabilities pi and qi will be informative

when they have diametrically opposite properties. For the sake of concrete-

ness, let us consider the probabilities pi and qi as nondecreasing and nonin-
creasing, respectively, in i 5 1, . . . , N. The two distributions are oppositely
ordered so that (Hardy et al., 1952, p. 43)

1 1

pi

2
1

pj 2 (qi 2 qj) $ 0

and consequently Tchebychef ’ s inequality for the weighted mean, 8(a) 5
( N

i 5 1 piai, will read (Hardy et al., 1952, Theorem 43, p. 43)

8[(p/q) a 2 1] 2 8(p a 2 1)8(1/q a 2 1)

5
1

2 o
N

i 5 1
o
N

j 5 1

pi pj 1 1

p1 2 a
i

2
1

p1 2 a
j 2 (q1 2 a

i 2 q1 2 a
j ) $ 0

Moreover, it follows from HoÈ lder’ s inequality (33) that 8( p a 2 1)8(1/q a 2 1)

# 1, or, equivalently,
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o
N

i 5 1

p a
i # 1 Y o

N

i 5 1

pi /q
a 2 1
i (35)

The right-hand side of (35) is the harmonic mean of q a 2 1, and in virtue of
the arithmetic-harmonic mean inequality

1 Y o
N

i 5 1

pi /q
a 2 1
i # o

N

i 5 1

piq
a 2 1
i

there results inequality (28). The reverse inequality (29) can be derived from

the reverse of HoÈ lder’ s inequality, ( N
i 5 1 p a

i q1 2 a
i $ 1, for a . 1.

A second proof of inequality (28) can be given in terms of majorization

(Marshall et al., 1967). Suppose, as before, that pi /qi is increasing in i 5
1, . . . , N. Then the ratio of the weighted means,

1 (
N
i 5 1 piq

a 2 1
i

( N
i 5 1 p a

i 2
1/( a 2 1)

is decreasing in a Þ 1. Thus, p s q, implying that the partial sums of

o
k

i 5 1

p a
i

( N
i 5 1 p a

i

$ o
k

i 5 1

piq
a 2 1
i

( k
i 5 1 piq

a 2 1
i

(36)

for k 5 1, . . . , N 2 1. The inequality is a consequence of the ordering

condition that pi /qi should be increasing in i 5 1, . . . , N, namely

o
k

i 5 1
p a

i o
N

j 5 1
pj q

a 2 1
j 2 o

k

i 5 1
piq

a 2 1
i o

N

j 5 1
p a

j

5 o
k

i 5 1
o
N

j 5 k 1 1

p a
i p a

j F 1 pj

qj 2
1 2 a

2 1 pi

qi 2
a 2 1

G $ 0

which is a sufficient condition for majorization (Marshall et al., 1967).
It will suffice to consider the k 5 1 term in (36). Upon rearrangement

we have

( N
i 5 1 p a

i

( N
i 5 1 piq

a 2 1
i

# 1 pi

qi 2
a 2 1

Multiplying both sides by pi and summing over all N gives the following result.

Theorem 2. Inequality (28), resulting from HoÈ lder’ s inequality (33), is

the directed divergence which measures the difficulty in discriminating

between the distributions p and q for values of a P (0, 1). Inequality (29)

can likewise be derived from the reverse of the HoÈ lder inequality for a . 1.
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6. DISTANCE AND DISCRIMINATION

When attempting to discriminate between alternative probability distri-

butions, it is desirable to have a measure of their `distance,’ or how `close’
they are to one another. Any candidate for a distance, r ( p, q), between p
and q, must possess the following properties:

1. r (p, q) . 0, for p Þ q, and r (p, q) 5 0 for p 5 q.

2. r (p, q) 5 r (q, p).

3. r (p, q) $ r ( p, r) 1 r (r, q).

The triangle inequality (3) is none other than the property of subadditivity

(Rudin, 1973). For positively homogeneous functions of degree 1, subadditi-

vity coincides with convexity. this is the reason for using convexity and
subadditivity interchangeably when discussing distances and norms. As we

have mentioned, the Kullback divergence does not satisfy the triangle inequal-

ity, (3), and hence cannot be considered a distance (Kullback, 1959, p. 6).

Euclidean space uses the Minkowski inequality (Hardy et al., 1952,

Theorem 25, p. 31)

1 o
N

i 5 1

(ai 1 bi)
s 2

1/s

# 1 o
N

i 5 1

as
i 2

1/s

1 1 o
N

i 5 1

as
i 2

1/s

to define the distance

i x 2 y i : 5 1 o
N

i 5 1
) xi 2 yi ) 2 2

1/2

on RN for 1 # s , ` . For s , 1 or s , 0 Minkowski’ s inequality is reversed,

so that it cannot be associated with a triangle inequality. However, there does
exist a companion to Minkowski’ s inequality (Hardy et al., 1952, Theorem

27, p. 32)

o
N

i 5 1
pi(ai 1 bi)

t , o
N

i 5 1
pia

t 1 o
N

i 5 1
pib

t
i (37)

0 , t , 1, which can formally be associated with the property of subadditivity

(Rudin, 1973, p. 35).

We first shall consider the case t 5 a 2 1, where a P (1, 2). On the

open interval (0, 1) we set a 5 q and b 5 p 2 q in (37) to obtain

o
N

i 5 1

pi( pi 2 qi)
a 2 1 . o

N

i 5 1

pi[q
a 2 1
i 2 p a 2 1

i ]
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The inequality

o
N

i 5 1

pi( pi 2 qi)
a 2 1 # o

N

i 5 1

pi ) pi 2 qi ) a 2 1 # o
N

i 5 1
) pi 2 qi ) a 2 1

leads to the definition

r a . 1( p, q) : 5 o
N

i 5 1
) pi 2 qi ) a 2 1 (38)

of a distance. Although (38) has the properties of being positive semidefinite,

symmetric, and subadditive, it is not a norm, since it is not positively homoge-
neous of degree 1. In order to satisfy this condition, a weighted mean is

required. but such a weighted mean, with a P (0, 1), would not satisfy a

triangle type of inequality, and hence would only be a partial norm. Moreover,

the weighted mean would turn out to be concave function and consequently

there would be no convex open sets, so that 0 would be the only continuous
linear mapping of the space into any locally convex space (Rudin, 1973, p.

35). We now relate (38) to the logarithm of the joint error law.

Appealing to the mean-value theorem (27), the difference of the weighted

means (9) is bounded from above by

} a 2 1( p) 2 } a 2 1(q) # sup ) (h 2 1)8 ) ? r a . 1( p, q)

Since the logarithm of the joint error law is proportional to the negative

difference of the weighted means (9), namely

log fN ( p, q) 5 2 k {} a 2 1(p) 2 } a 2 1(q)} (39)

where k . 0 is a constant of proportionality, we have

) log fN (p, q) ) # k 1 r a . 1(p, q) (40)

where the constant k 1 5 sup ) (h 2 1)8 ) k .

Next consider values of a P (0, 1). The distance (38) cannot be used

since it is infinite when p 5 q. However, if we set t 5 1 2 a , a 5 1/p, and

b 5 1/q 2 1/p . 0 in (37), we get

o
N

i 5 1

pi(1/qi 2 1/pi)
1 2 a 5 o

N

i 5 1

p a
i 1 pi 2 qi

qi 2
1 2 a

$ o
N

i 5 1

pi /q
1 2 a
i 2 o

N

i 5 1

p a
i

Since

o
N

i 5 1

pi(1/qi 2 1/pi)
1 2 a # o

N

i 5 1

pi ) 1/qi 2 1/pi ) 1 2 a # o
N

i 5 1
) 1/qi 2 1/pi ) 1 2 a
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the distance from q to p can be defined as

r a , 1(q, p) : 5 o
N

i 5 1
) 1/qi 2 1/pi ) 1 2 a (41)

The distance (41) on the open interval a P (0, 1) has all the same properties

that (38) has on the interval a P (1, 2). In particular, it vanishes when p 5 q,

which is the reason why (38) cannot be used for values of a P (0, 1).

Unlike (40), there is no direct relationship between (41) and the logarithm

of the joint error density. However, if we use the Minkowski inequality2

1 o
N

i 5 1

pi(ai 1 bi)
r 2

1/r

. 1 o
N

i 5 1

pia
r
i 2

1/r

1 1 o
N

i 5 1

pib
r
i 2

1/r

(42)

for r , 0, we obtain an upper bound on the logarithm of the error law.

Specifically, setting r 5 2 (1 2 a ), a 5 q, and b 5 p 2 q, we find that

Minkowski’ s inequality is converted into

1 o
N

i 5 1

p a
i 2

2 1/(1 2 a )

2 1 o
N

i 5 1

pi /q
(1 2 a )
i 2

2 1/(1 2 a )

. 1 o
N

i 5 1

pi /(pi 2 qi)
(1 2 a ) 2

2 1/(1 2 a )

Consequently, the logarithm of the joint error law is bounded by

log fN ( p, q) , 2 k ? 1 o
N

i 5 1
pi /( pi 2 qi)

(1 2 a ) 2
2 1/(1 2 a )

; 0 , a , 1 (43)

2 This inequality can be derived in an analogous way to the usual Minkowski inequality (Hardy
et al., 1952, Theorem 24, p. 30), with the exception that the direction of HoÈ lder’ s inequality
is the reverse of the usual one for a negative exponent. In the simplest case we have

o
N

i 5 1

pi(ai 1 bi)
r 5 o

N

i 5 1

piai(ai 1 bi)
r 2 1 1 o

N

i 5 1

pibi(ai 1 bi)
r 2 1

Using HoÈ lder’ s inequality in the form

o
N

i 5 1

piai(ai 1 bi)
r 2 1

5 o
N

i 5 1

( p1/r
i ai)( p1/r

i (ai 1 bi))
r 2 1 . 1 o

N

i 5 1

( p1/r
i ai)

r 2
1/r

1 o
N

i 5 1

[ p1/r
i (ai 1 bi)]

r2
1/r8

where r8 5 r/(r 2 1), gives

o
N

i 5 1

pi(ai 1 bi)
r . F 1 o Ni 5 1

pia
r
i 2

1/r

1 1 o
N

i 5 1

pib
r
i 2

1/r

G 1 o Ni 5 1

pi(ai 1 bi)
r 2

1/r8

and from which Minkowski’ s inequality (42) follows directly. However, it cannot be used to
define a metric because it is the reverse of the triangle inequality. In other words, inequality
(42) is a statement of superadditivity . Note also that if r8 , 1 then r , 0, and vice versa.
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where k is a positive constant. Inequality (43) guarantees maximum probabil-

ity for p 5 q. Moreover, due to the conjugate nature of the exponents r and

r8 in the proof of the Minkowski inequality (42) (cf. footnote 2), by setting
r 5 a 2 1 for values of a P (1, 2), we get an analogous upper bound

log fN ( p, q) , 2 k ? 1 o
N

i 5 1

pi(pi 2 qi)
a 2 1 2

1/( a 2 1)

; 1 , a , 2 (44)

on the logarithm of the joint error probability density.

It is well known that Shannon’ s inequality (3) can be related to the x 2

statistic (Kullback, 1959, p. 114). That is, if p is not too distant from q,

log( p/q) can be estimated as the mean of its upper, (p 2 q)/q, and lower,

(p 2 q)/p, bounds. Thus, Kullback’ s symmetric divergence becomes

% 5 o
N

i 5 1

( pi 2 qi)log 1 pi

qi 2
’

1

2 o
N

i 5 1

( pi 2 qi)
2

pi

1
1

2 o
N

i 5 1

(pi 2 qi)
2

qi

:

5
1

2
( x 2 1 x 82)

where the first sum is Pearson’ s x 2, and the second sum is Neyman’ s x 82

statistic. The closer q is to p, the better the approximation.

In contrast to the x 2 statistic, the directed divergences (28) and (29)

implicate a different type of statistic. For a , 1, the symmetric divergence

for power laws is

7 a , 1 5 o
N

i 5 1
(pi 2 qi){q a 2 1

i 2 p a 2 1
i } $ 0 (45)

The difference in the curly brackets in (45) is bounded below and above by

[Hardy et al., 1952, Theorem 41, inequality (2.15.1), p. 39]

(1 2 a )q a 2 2(p 2 q) . q a 2 1 2 p a 2 1 . (1 2 a )p a 2 2( p 2 q)

We may therefore use, as a first approximation to (q a 2 1 2 p a 2 1), the mean

of its upper and lower bounds. With this approximation, the symmetric
divergence (45) becomes

7 a , 1 ’
(1 2 a )

2 o
N

i 5 1 H p a
i 1 pi 2 qi

pi 2
2

1 q a
i 1 pi 2 qi

qi 2
2

J $ 0 (46)
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We may say that the variable order a necessitates the weights p a and q a on

the x 2 statistics. In the limit as a - 1, the first sum in the curly brackets of

(46) reduces to the Pearson x 2 statistic, while the second sum becomes the
Neyman x 82 statistic.

For a . 1, the difference in the curly brackets of

7 a . 1 5 o
N

i 5 1

(qi 2 pi){q a 2 1
i 2 p a 2 1

i } $ 0 (47)

is bounded above and below by [Hardy et al., 1952, Theorem 41, inequality

(2.15.2), p. 39]

( a 2 1)q a 2 2(q 2 p) , q a 2 1 2 p a 2 1 , ( a 2 1)p a 2 2(q 2 p)

If, as a first approximation, we again use the mean of the upper and lower
bounds to estimate the difference in the curly brackets of (47), we obtain

7 a . 1 ’
( a 2 1)

2 o
N

i 5 1 H p a
i 1 pi 2 qi

pi 2
2

1 q a
i 1 pi 2 qi

qi 2
2

J $ 0 (48)

Like the x 2 statistic, both (46) and (48) measure the departure of the
expected from observed frequencies. The x 2 statistic is an approximation to

the logarithm of the likelihood ratio when the distance between the observed

from the expected values is small. The likelihood functions are products of

the individual probabilities, which must be assumed from the beginning. The

assumption of normality is based on a mixture of mathematical convenience
and large sample theory, which rely on the law of large numbers and the central

limit theorem (Bickel and Doksum, 1977). The choice of the distribution not

only determines the statistic, but also, in certain cases, its critical value. In

place of the log-likelihood function, we have the log-joint error law. The

statistic is determined by the assumption that it is the most probable value

of the quantity measured. The sample distribution is a consequence of this
choice. And varying the order a gives a continuous range of means which

are the modes of the distributions.
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